تبلیغات
اریا مقاله

امروز:

تحقیق بررسي فرآيند توليد و كاربرد الياف فوق ظريف و نانو

تحقیق بررسي فرآيند توليد و كاربرد الياف فوق ظريف و نانو

چكيده :

به منظور توليد الياف نانو دو روش كلي وجود دارد، روش اول، توليد الياف با استفاده از كاتاليزور مي باشد كه در اين روش الياف در بستر مخصوص يا محلول اختصاص داده شده منعقد مي شوند، استفاده از كاتاليزور شناور براي توليد مناسب تر از كاتاليزور دانه دار شده
مي باشد زيرا ميزان كاتاليزور موجود در بستر محلول همواره تحت كنترل مي باشد. روش ديگر توليد الكتروريسي مي باشد كه مي توان نانو الياف منفرد و ممتد را به ميزان توليد بالا تهيه نمود. در اين روش نانو الياف پليمري مي توانند مستقيماً از محلول پليمري به نانو الياف پليمري تبديل شوند.

الكتروريسي ريسيدن نانو الياف پليمري تا قطر چند ده نانو متر، روشي است كه تكيه بر نيروهاي الكترواستاتيكي دارد. در اين فرآيند، بين قطره اي از محلول پليمري يا مذاب كه در نوك نازل آويزان است و يك صفحه فلزي جمع كننده پتانسيل الكتريكي اعمال مي شود. با بالا رفتن ميدان الكتريكي قطره پليمري شروع به كشيده شدن مي كند تا اينكه اين نيرو بر نيروي تنش سطحي قطره غلبه كرده و يك جت شارژ شده بسيار نازك از محلول پليمري از سطح قطره خارج شده و به سمت فلز جمع كننده سرعت مي گيرد. پس از طي مسير كوتاهي دافعه متقابل شارژهاي حمل شده در سطح جت، آنرا خم كرده و جت، مسير خود را بصورت مارپيچ و حلقه اي ادامه خواهد داد. بدين ترتيب جت در فاصله كم نازل تا جمع كننده
مي تواند مسير بسيار زيادي را طي كرده، تا نيروهاي الكتريكي آنرا هزاران بار كشيده و ظريف نمايند.

استفاده از اين تكنولوژي هاي جديد ما را در انجام كارهايي كه زماني غير ممكن
مي نموده رهنمون مي سازد، در سال هاي اخير از اين شيوه براي ساخت الياف نانو در محدوده وسيعي از پليمرها و در كاربردهاي مختلف نظير ساخت فيلترها، تقويت در كامپوزيت ها، كامپوزيت هاي شفاف، نانو الياف كربن، نانو الياف هادي، نانو الياف توخالي، نانو الياف سراميكي، سنسورهاي بسيار حساس، قالب براي رشد بافت زنده بدن، پر كردن بافت هاي آسيب ديده، بافت هاي ضد باكتري، حمل دارو، پوشش زخم، ماسك هاي آرايشي و … به كار رفته است.

فصل اول

نانو تكنولوژي و تاريخچه توليد الياف نانو

۱-۱ )مقدمه:

مفهوم نانوتکنولوژی جدید نمی باشد و از بیش از ۴۰ سال پیش آغاز گردیده است، بر اساس تعریفNNI نانو تکنولوژی عبارت است از بکار بردن ساختارهایی با حداقل یک بعد در اندازه نانومتر برای ساخت مواد، وسایل و سیستم هايي با خواص بدیع و قابل توجه که مربوط به اندازه نانو آنها می باشد. نانو تکنولوژی نه تنها ساختارهای کوچک تولید می کند بلکه تکنولوژی ساخت پیشرفته ای می باشد که می تواند کنترل کم هزینه ای برای ساختار ماده ایجاد نماید. نانوتکنولوژی در بهترین صورت به این گونه توصیف می شود که فعالیت هایی هستند در حد اتمها و مولکول ها که کاربردهایی در دنیای واقعی دارند. قطعات نانو که به طور معمول در محصولات تجاری استفاده می شوند، در حدود یک تا صد نانومتر هستند. [۱]

نانو تکنولوژی به صورت روزافزونی توجه دنیا را به خود جلب نموده چرا که به عنوان ارائه کننده پتانسیل بالایی از محدوده های وسیع، مصارف شناخته شده است. خواص جدید و
بی نظیر مواد نانو نه تنها دانشمندان و محققین بلکه تجارت را به خود جلب کرده که به دلیل پتانسیل بالای اقتصادی آن می باشد.[۱]

همچنین نانو تکنولوژی پتانسیل تجاری واقعی برای صنعت نساجی دارد این امر به طور عمده به خاطر این واقعیت است که روش های مرسوم که برای دادن خواص مختلف به پارچه استفاده می گردند معمولا اثر دائمی ندارند و کارایی خود را بعد از شستشو و یا بر اثر پوشیدن از دست می دهند. نانو تکنولوژی می تواند دوام بالایی برای پارچه ها ایجاد کند چرا که قطعات نانو سطح بزرگی از نسبت مساحت به حجم و نیز انرژی سطحی بالایی دارند، بنابراین بستگی بیشتری با پارچه داشته و منجر به افزایش ماندگاری کاربردی آن می گردد. به علاوه پوششی از ذرات نانو روی پارچه بر خاصیت عبور هواو زیر دست آن اثری نمی گذارد بنابراین مزیت استفاده از نانو تکنولوژی در صنعت نساجی در حال افزایش است.خواصی که با استفاده از نانوتکنولوژی به پارچه داده می شود عبارتند از آب گریزی، ضد خاک،
ضد چروک، ضد باکتری، آنتی استاتیک، مقاومت در برابر اشعه یو وی، کند کردن توسعه آتش، بهبود در رنگ پذیری و غیره که در فصل های بعدی به آنها اشاره خواهد شد.[۱]

۲-۱ )نانومواد:

مواد نانو ساختار در دهه گذشته به علت داشتن رفتار و ویژگیهای برجسته مورد توجه وسیع جامعه علمی و صنعتی جهان قرار گرفته است. ماده نانوساختاری به هر ماده ای اطلاق
می شود که حداقل یکی از ابعاد آن در مقایس نانومتر(زیر ۱۰۰ نانومتر) باشد این تعریف صریحا انواع بسیار زیادی‌از ساختارها اعم از ساخته‌دست بشر یا طبیعت را شامل می شود.[۱]

طبقه بندی نانو مواد: (Classification of Nanomaterials)                                                ۱- نانو فیلم های لایه نازک                                            (Nano Layer Thin Films)
۲- نانو پوششهاNano Coatings)                                                                                   (
۳- نانو خوشه ها                                                                      (Nano Clusters)

۴- نانو سیم ها و نانو لوله ها(Nano Tubes & Nano Wires)                                                
۵- روزنه های نانو                                                                          (Nano Pores)
۶- نانو ذرات (Nano Particles  )                                                                                          در این بخش به معرفی هر گروه از این طبقات می پردازیم:

۱-۲-۱) نانو فیلم های لایه نازک :                                                      (Nano Layer Thin Films)

در دنیای کنونی اصلاحات سطحی به یک فرآیند مهم و اساسی تبدیل شده است. در سه دهه گذشته سطوح و لایه های روی آن ها و پوشش دهی سطوح، افزایش کارایی و محافظت سطوح را به دنبال دارد. در این مورد روشهایی شامل ایجاد لایه های نازک یا پوشش ها بر روی سطوح موجود می باشند که به این ترتیب یک سطح جدید ساخته می شود. رسوب یک لایه نازک (نانو لایه) برای پوشش دهی در اکثر صنایع جایگاه مهمی یافته است. در واقع نانولایه ها فیلم های بسیار نازک و نانو پوششها سطح جدیدی از فناوری لایه های نازک
می باشند. نانو لایه ها باعث افزایش ارزش افزوده زیادی برای صنعت پوشش ها می شوند. نانو لایه ها دارای یک ساختار نانوذره ای می باشند که این ساختار یا از توزیع نانو ذرات در لایه ایجاد می شود و یا به وسیله یک فرآیند کنترل شده یک نانوساختار در حین رسوب ایجاد می شود. با افزایش لایه ها می توان طبقاتی از لایه های دارای ضخامت یک مولکول ایجاد کرد و ماده روکش شده هم خود می تواند به عنوان زیر لایه ای برای لایه دیگری از یک ترکیب متفاوت باشد. تابه حال چندین راه کار متفاوت برای خلق فیلم های فلزی و سرامیکی ایجاد شده است ولی معمولا شرایطی دارند که در آن مولکول های عالی تخریب می شوند. یکی از روش های ایجاد این لایه های نازک، لیتوگرافی می باشد که جدیداً به نانولیتوگرافی مشهور شده است چون توانایی ایجاد لایه های نانومتری را پیدا کرده است. قابل ذکر است که نانولایه ها در الکترونیک کاربرد زیادی را پیدا کرده اند. یکی از بزرگترین زمینه های کاربردی در فیلم های نازک استفاده از این نانولایه ها در اجزا و قطعات الکترونیکی، نوری و الکترواپتیکی است. همانند زیر لایه ها، خازن ها،قطعات حافظه،آشکار سازی های مادون قرمز و راهنماهای موجی. [۱]

۲-۲-۱) نانو پوششها: Nano Coatings)                                                                             (

پوششها دارای کاربردهای مختلف و متنوعی می باشند. پوشش ها برای محافظت، افزایش یا تزیین محصولاتی چون شیشه ها، فلزات، پلاستیک ها، کاغذ، کفشها، عینک های آفتابی، لوازم ورزشی، مبلمان، وسایل آشپزی، آلات پزشکی، الکترونیک و اتومبیل ها به کار می روند با این وجود هم پوشش ها و هم سطوحی که در مورد پوشش ها به کار می روند در معرض آسیب هایی از محیط اطراف مثل باران، برف، نمک ها ، رسوب های اسیدی، اشعه ماوراء بنفش نور آفتاب و رطوبت می باشند. ضمنا پوشش ها قابلیت خش برداشتن، تکه تکه شدن و یا آسیب دیدگی در زمان استفاده ، ساخت و حمل ونقل را دارند. با یافتن راههایی می توان از آسیب دیدن روکش ها جلوگیری کرد. همانطور که گفته شده فناوری نانو قادر به جلوگیری از خش برداشتن، تکه تکه شدن و خرده شدن روكش ها می باشد. از موارد استفاده نانو روکش ها
می توان به روکش های ضد انعکاس در مصارف خودرو سازی و سازه ای، روکش های محافظ (ضد خش، غیرقابل رنگ آمیزی و قابل شستشو آسان) و روکش های زینتی اشاره کرد. فناوری های روکش دهی پیشرفته همانند مواد مبتنی بر نانو ذرات سرامیکی می تواند منجر به مقاومت حرارتی بهبود یافته ومصارفی با مقاومت حرارتی بالاتر شود.[۱]

از کاربرد این روکش ها در صنایع خودرو سازی و حمل و نقل می توان به نانوروکش های سرامیکی که موجب پایداری حرارتی و مقاومت به فرسایش در قطعات موتور می شوند، اشاره کرد.[۱]

۳-۲-۱ ) نانو خوشه ها:                                                                                  (Nano Clusters)

در اوایل دهه ۸۰ میلادی دانشمندان فیزیک کشف کردند که اتم های گازی، فلزی به شکل حباب های پایدار وبا تعداد اتم های مشخصی مجتمع می شوند. در دهه ۹۰ آنها اثر مشابهی را در کار بر روی سطوحی مشاهده کرده اند که اتم های گازی می توانند به شکل خوشه هایی با   اندازه های ویژه روی سطح بچسبند. یک گروه با رهبری Qi- kue xueاز دانشگاه علوم چین سعی کردند که این فرآیند را با دقت بیشتر و با استفاده از اتم های سطحی سیلیکون به عنوان یک الگو کنترل کنند. آنها اتم های فلزی بر روی سطح بسیار منظم کریستال Si را بصورت بخار در آورده و با استفاده از میکروسکوپ SEM مشاهده کردند که خوشه یکنواخت در ۵/۱ تا ۴ میلیمتر از سطح کریستال تشکیل شده است. همچنين مشاهده کردند که هر خوشه در نصف واحد شبکه کریستال Si تشکیل می شود و نیمی دیگر از کریستال را خالی می گذارد. با توجه به محاسبات انجام شده به این نتیجه رسیدند که اتم ها سطح را برای پیدا کردن مکانی که به کمترین مقدار انرژی برسند، جستجو می کنند. اگر خوشه ها دارای خاصیت آهن ربایی شوند می توانند برای وسایل، ذخیره اطلاعات که بسیار فشرده هستند و کاتالیست ها برای واکنش های شیمیایی استفاده شوند.[۱]

۴-۲-۱ )نانو سیم ها و نانو لوله ها:(Nano Tubes & Nano Wires)                                      نانو ساختارهای فعلی همانند نانو سیم ها، نانو لوله ها و یا نانو میله ها از موادی همانند نیمه     هادی ها، فلزات و یا کربن از طریق روش های مختلفي تولید می گردند. یکی از مشکلات بر سر راه تولید نانو لوله های کربنی خطی این است که می توانند در فرآيند تولید به صورت  شکل های متعددی در آید. (منفرد، چند لایه، پر شده و یا اصلاح سطحی شده) . لفظ نانو لوله در حالت عادی در مورد نانو لوله های کربنی به کار می رود که مورد توجه فراوانی از سوی محققان در دهه ۹۰ قرار گرفته است. این دسته از نانومواد خواص جالب توجهی را به همراه خود دارند. یک خصوصیت مشهور آنها استحکام کششی برجسته آنهاست که نزدیک به ۱۰۰ گیگاپاسکال یعنی بیش از ۱۰۰ برابر استحکام فولاد است. نانو لوله های کربنی دارای خواص الکتریکی جالبی نیز می باشند. آنها بسته به Chirality می توانند رسانا، نانو لوله های فلزی و یا نیمه رسانا باشند و به دلیل توانمندی آنها در نانو الکترونیک جامعه پژوهشی توجه فوق العادی به آنها مبذول داشته است. نانو لوله های کربنی تک دیواره در مصارف الکترونیکی با بیشترین توجه روبرو شده اند. نانو لوله های کربنی خواص برجسته حرارتی را نیز در جهت لوله ها و نه عمود بر آن نشان داده اند. [۱]

از کاربرد نانو لوله های کربنی می توان به بیوسنسورها برای تشخیص قند خون استفاده کرد همچنین نانو لوله های کربنی به عنوان پر کننده ای برای نانو کامپوزیت ها استفاده می گردند.

ویژگیهای جدیدی بخصوص از لحاظ استحکام در کامپوزیت شاهد باشیم. امروزه نانو لوله های کربنی با روش تولیدی CVD   از مقدار زیادی تا مقادیر چند گرمی به دست می آید.[۱]

۵-۲-۱ )روزنه هاي نانو :                                                                                           (Nano Pores)

مواد با روزنه هايي در محدودة نانو کاربردهای صنعتی جالبی را نشان می دهد. به علت ویژگیهای برجسته آنها با توجه به عایق حرارتی بودن، تحليل مواد و کاربرد آنها به عنوان پر کننده هایی برای کاتالیزور در علم شیمی مورد توجه زیادی می باشند.این گروه از مواد پتانسیل بالایی در کاتالیست ها، عایق های حرارتی، موادالکترودی، فیلترهای محیطی و غشاها، به عنوان محل های تحويل داروی کنترل شده دارا می باشد.[۱]

۶-۲-۱) نانو ذرات:                                                                                      (Nano Particles)

آخرین دسته از نانو مواد ، نانو ذرات می باشد. نانو ذرات از مدتها قبل مورد استفاده بوده اند. شاید اولین موارد استفاده از آنها در لعاب ظروف سفالی چیني ها باشد. در سالهای اخیر پیشرفت های بسیار بزرگی در زمینه امکان ساخت نانو ذرات از مواد گوناگون و امکان کنترل شدید بر روی اندازه، ترکیب و یکنواختی آنها صورت گرفته است. نانو ذرات از دهها و یا صد ها اتم یا مولکول با اندازه ها و مورفولوژی های مختلف (آمورف، کریستالی، کروی شکل، سوزنی شکل و غیره) ساخته شده است. اغلب نانو ذرات که به طور تجاری مورد استفاده قرار می گیرند به شکل پودر خشک و یا به صورت دیسپرس های مایع می باشد. البته نانو ذرات ترکیب شده (آمیخته شده) در یک محلول آلی یا آبی که به شکل سوسپانسیون یا خمیری شکل است نیز مورد توجه می باشد. برای رسیدن به یک توزیع پایدار و همگن از نانوذرات باید مواد وعامل های شیمیایی همانند سطح فعال ها و دیسپرس كننده ها را به آن بیفزاییم.[۱]

۳-۱ )الیاف نانو :

تولید فیلامت های مصنوعی با استفاده از نیروهای الکترواستاتیک بیشتر از یک صد سال شناخته شده است. فرآيند ریسندگی الیاف با کمک نیروهای الکترواستاتیک به عنوان ریسندگی الکترو شناخته می شود. اخیرا نشان داده شده است که فرآيند ریسندگی الکترو قادر به تولید الیاف در محدوده کمتر از میکرون می باشد. ریسندگی الکترو توجه زیادی را در دهه اخیر نه تنها به دلیل قابلیت ریسندگی انواع گوناگون الیاف پلیمری به دست آورده است بلکه به دلیل پایداری در تولید الیاف در محدوده کمتر از میکرون نظرها را نیز به خود جلب کرده است. در علم لیف الیاف با قطرهای کمتر از ۱۰۰ نانو معمولا به عنوان الیاف نانو طبقه بندی می شوند. این الیاف با روزنه های کوچکتر و سطح تماس بیشتر از الیاف معمولی کاربردهای زیادی را در نانو کاتالیزور، پیوند بافت، پوشاک محافظتی ، فیلتراسیون و الکترونیک نوری دارند.[۲]

فرآيند ریسندگی الکترو از میدان الکتریکی با ولتاژ بالا برای تولید جریان های باردار الکتریکی از محلول پلیمر يا مذاب استفاده می کند که در قسمت خشک کن به وسیله تبخیر حلال الیاف نانو تولید می شوند. الیاف که دارای بار زیادی هستند توسط میدان باردار شده و به سوی جمع کننده که می تواند یک سطح تخت و یا دیسکی در حال چرخش باشد تا الیاف را جمع کند حرکت می کنند در روش های ریسندگی معمولی الیاف در برابر مجموعه ای از نیروهای کششی، جاذبه ای، آیرودینامیکی، رئولوژیکی و اینرسی قرار می گیرند. در ریسندگی الکترو ریسندگی الیاف اساساً از طریق نیروهای کششی صورت گرفته و در جهت محور جریان پلیمر به وسیله بارهای القا شده در میدان الکتریکی به دست می آید. [۲]

۴-۱) تاریخچه توليد الياف نانو :

فکر استفاده از الکتریسیته ساکن برای حرکت سیال به ۵۰۰ سال پیش برمی گردد [۵]. عبارت ریسندگی الکترو از ریسندگی الکترواستاتیک گرفته شده است که ایده اصلی آن به بیش از ۶۰ سال پیش باز می گردد . این فرآیند اولین بار به وسیله زلنی در ۱۹۱۴ مطالعه شد.[۲]

سرآغاز ریسندگی الکترو به عنوان یک روش ریسندگی لیف را می توان به اوایل دهه ۱۹۳۰ نسبت داد. در سال ۱۹۳۴ فرمالز اولین اختراع خود را در ارتباط با فرآيند و وسایل تولید فیلامنت های مصنوعی با استفاده از بارهای الکتریکی به ثبت رسانید.[۲]

شكل ۱-۱: دستگاه اختراعي فرمالز

 

فرآيند ریسندگی فرمالز شامل یک وسیله جمع کننده متحرک نخ می باشد تا نخ را تحت کشش مانند شرایط دیسک ریسندگی در ریسندگی معمولي جمع نمایند. فرآيند فرمالز
می توانست نخ های موازی را روی وسیله دریافت کننده به طور پیوسته باز کند. فرمالز در اولین ثبت اختراع خود ریسندگی الیاف استات سلولز را با استفاده از استون به عنوان حلال گزارش نمود. این روش برای خشک کردن کامل الیاف بعد از ریسندگی به دلیل فاصله اندک میان نواحی جمع آوری و ریسندگی با مشکل روبرو بود که منجر به ساختاری با شبکه تجمعی کمتر شد. در ثبت اختراع بعدی فرمالز روش اولیه خودش را برای غلبه بر مشکل فوق اصلاح نمود. در فرآيند اصلاح شده فاصله بین قسمت تغذیه و وسیله جمع کننده لیف را تغییر داد تازمان خشک شدن طولانی تری را برای الیاف الکترو اسپان فراهم نماید. در نتیجه در سال ۱۹۴۰ فرمالز روش دیگری را برای تولید شبکه کامپوزیتی لیف از مواد اولیه پلیمری ارائه کرد.[۲]

در سال ۱۹۵۲ ونگات و نئوبائر توانستند جریان هایی با قطرهاي یکنواخت با استفاده از ولتاژ بالا با قطری در حدود یک دهم میلیمتر تولید نمایند.در سال ۱۹۶۶ سیمونز دستگاهی جهت تولید منسوجات بی بافت فوق ظریف با وزن خیلی کم با نمونه های مختلف پليمري با استفاده از ریسندگی الکترو اختراع کرد. در این دستگاه الکترود مثبت در داخل محلول پلیمری قرار داشت و الکترود منفی به کمربندی که منسوج بی بافت روی آن جمع آوری می شد وصل شده بود. او دریافت که الیاف حاصل از محلول های با ویسکوزیته  پایین تمایل به کوتاه و نازک شدن دارند در صورتی که الیاف حاصل از محلول هایی با ویسکوزیته بالا نسبتا ممتد می باشند.[۴]

در دهه ۱۹۶۰ مطالعات اساسی روی فرآيند تشکیل جت به وسیله تیلور آغاز گردید، در سال ۱۹۶۹ تیلور شکل قطره تولید شده در نوک سرنگ را مطالعه کرد.او نشان داد كه به وجود آمدن این قطره در نوک سرنگ هنگامی که یک میدان الکتریکی به کار گرفته می شود، میسر شده كه قطره مخروطی شکل بوده و جتها از نوک مخروط به بیرون جریان می یابند. این شکل مخروطی جریان بعدها به وسیله محققین دیگر «مخروط تیلور» نامیده شد . با بررسی مفصل در مورد مایعات مختلف تیلور مشخص کرد که زاویه ای ۳/۴۹ درجه ای برای ایجاد تعادل بین تنش سطحی پلیمر با نیروهای الکترواستاتیک مورد نیاز است.[۲]

در سال های بعدی توجهات به مطالعه مورفولوژی ساختاری الیاف نانو معطوف گردید. محققین به ویژگی ساختاری الیاف و شناخت ارتباط بین الگوهای ساختاری و پارامترهای فرآيند توجه زیادی نشان دادند. پراش اشعه ایکس با زاویه گسترده (WAXD)، میکروسکوپ الکترونی (SEM)، میکروسکوپ الکترونی (TEM)  و  کالری متری پویشی دیفراکسیونی (DSC) به وسیله محققین برای تعیین ویژگی الیاف نانو الکترواسپان به کار رفت. در سال ۱۹۷۱ با مگارتن ریسندگی الکترو، میکرو لیف های اکریلیک را گزارش نمود که قطر آنها بین ۱۰۰ تا ۵۰۰ نانو بود. او محدوده های قابل ریسندگی محلول دی متیل فرمامید پلی اکریلونیتریل (PAN/DMF) را تعیین و وابستگی قطر لیف را به ویسکوزیته مشاهده نمود. لاروندو و ماندلی الیاف پلی اتیلن و پلی پروپیلن را از مذاب تولید نمودند که معلوم شد به طور نسبی از نظر قطر بزرگتر از الیاف محلول ریسیده شده می باشد. آنها نشان دادند که قطر با افزایش دمای ذوب کمتر می شود. [۲]

در سال ۱۹۸۷ هایاتی تاثیر میدان الکتریکی، شرایط آزمایش و فاکتورهای موثر بر ثبات لیف را مورد مطالعه قرار داد. آنها نتیجه گرفتند که رسانایی مایع تنش عمده ای را در اختلال الکترواستاتیکی سطوح مایع ایفا می کندو نتایج نشان داد که سیال های دارای رسانایی زیاد با افزایش ولتاژ اعمال شده باعث ایجاد جریان های شدیدا ناپایدار می گردد که در جهت های مختلف جابجا می شوند.[۲]

بعد از وقفه ای۱۰ ساله جهشي عمده در زمینه تحقیق بر روی ریسندگی الکترو به واسطه پیشرفت علم در زمینه کاربردهای بالقوه الیاف نانو در حوزه های مختلف مانند مواد با بازدهی بالا ، فیلتراسیون، حفاظتی، مواد کاتالیزوی و مواد جذب کننده به وجود آمد. داشی و رنکر ویژگی های الیاف نانو پلی اتیلن اكسايد (PEO) را به وسیله تغییر دادن غلظت محلول و پتانسیل الکتریکی اعمال شده مطالعه کردند. قطرهای جریان به عنوان تابعی از فاصله رئوس مخروط اندازه گیری شد و آنها مشاهده کردند که قطر جریان با افزایش فاصله کمتر می گردد.

 

عنوان                                                                                                               صفحه

چكيده…………………………………………………………………………………………………….. ۱

فصل اول : نانو تكنولوژي و تاريخچه توليد الياف نانو

۱-۱)مقدمه……………………………………………………………………………………………… ۳

۲-۱)نانو مواد و طبقه بندي آنها ………………………………………………………………… ۴

۱-۲-۱)نانو فيلمهاي نازك………………………………………………………………….. ۵

۲-۲-۱)نانو پوششها…………………………………………………………………………… ۶

۳-۲-۱)نانو خوشه ها…………………………………………………………………………. ۷

۴-۲-۱)نانو سيمها ونانو لوله ها……………………………………………………………. ۸

۵-۲-۱)روزنه هاي نانو………………………………………………………………………. ۹

۶-۲-۱)نانو ذرات………………………………………………………………………………. ۹

۳-۱)الياف نانو………………………………………………………………………………………… ۱۰

۴-۱)تاريخچه توليد الياف نانو……………………………………………………………………. ۱۱

فصل دوم : روشهاي توليد الياف نانو

۱)تهيه الياف نانو به روش كا تا ليزور شناور…………………………………………………. ۱۸

اثر سولفور………………………………………………………………………………………… ۲۱

اثر دماي تبخير ماده خام……………………………………………………………………… ۲۳

اثر هيدروژن………………………………………………………………………………………. ۲۵

۲)ريسندگي الكترو اسپينينگ……………………………………………………………………… ۲۷

۱-۲)تئوري و فرايند ريسندگي الكترو اسپينينگ……………………………………… ۲۷

۲-۲)ريسندگي الكترو اسپينينگ……………………………………………………………. ۲۹

۱-۲-۲)ريسندگي الكترو اسپري………………………………………………………. ۲۹

۲-۲-۲)ريسندگي الكترو مذاب……………………………………………………….. ۳۰

۳-۲-۲)ريسندگي الكترو محلول……………………………………………………… ۳۲

۳-۲)شروع جريان سيال پليمري وتشكيل مخروط تيلور ………………………….. ۳۵

۴-۲)ناپايداري خمشي………………………………………………………………………… ۳۶

۵-۲)ريسندگي الياف نانو پليمري…………………………………………………………. ۳۸

۶-۲)ساختار ومورفولوژي الياف نانو پليمري………………………………………….. ۳۸

۷-۲)پارامترهاي فرايند و مورفولوژي ليف……………………………………………… ۳۹

۱-۷-۲)ولتاژ اعمال شده………………………………………………………………….. ۳۹

۲-۷-۲)فاصله جمع كننده-نازل………………………………………………………… ۴۰

۳-۷-۲)شدت جريان پليمر……………………………………………………………….. ۴۱

۴-۷-۲)محيط ريسندگي…………………………………………………………………… ۴۱

۸-۲)پارامترهاي محلول………………………………………………………………………. ۴۲

۱-۸-۲)غلظت محلول…………………………………………………………………….. ۴۲

۲-۸-۲)رسانايي محلول…………………………………………………………………… ۴۳

۳-۸-۲)فراريت حلال……………………………………………………………………… ۴۳

۴-۸-۲)اثر ويسكوزيته…………………………………………………………………….. ۴۴

۹-۲)خواص الياف نانو………………………………………………………………………… ۴۵

۱-۹-۲)خواص حرارتي…………………………………………………………………… ۴۵

۲-۹-۲)خواص مكانيكي…………………………………………………………………. ۴۶

۱۰-۲)مزاياي ريسندگي الكترو…………………………………………………………….. ۴۶

۱۱-۲)معايب ريسندگي الكترو…………………………………………………………….. ۴۸

۱۲-۲)بررسي اهداف ايده ال در ريسندگي الكترو……………………………………. ۴۹

۱۳-۲)ريسندگي الياف دو جزئي پهلو به پهلو…………………………………………. ۵۱

۱۴-۲)خصوصيات الياف الكترو ريسيده شده………………………………………….. ۵۳

۱۵-۲)ريسندگي الكتريكي الياف نانو از محلولهاي پليمري………………………. ۵۴

۱۶-۲)ريسندگي الكترو الياف پر شده با نانو تيوبهاي كربن………………………. ۵۸

۱۷-۲)تعيين خصوصيات مكانيكي و ساختاري الياف كربن الكترو ريسيده شده.. ۶۸

 

فصل سوم : كاربردهاي مختلف الياف نانو و نانوتكنولوژي در صنعت نساجي

مقدمه……………………………………………………………………………………………………… ۸۴

۱-۳)الياف نانو گرافيت و كربن………………………………………………………………….. ۸۵

۲-۳)نمونه بافت و تزريق دارو…………………………………………………………………… ۸۵

۳-۳)الياف نانو با خاصيت كا تا ليزوري………………………………………………………. ۸۷

۴-۳)فيلتراسيون……………………………………………………………………………………….. ۸۸

۵-۳)كاربرد هاي كامپوزيتي……………………………………………………………………….. ۹۰

۶-۳)كاربرد هاي پزشكي…………………………………………………………………………… ۹۱

۱-۶-۳)پيوندهاي شيميايي…………………………………………………………………… ۹۱

۲-۶-۳)نمونه بافت……………………………………………………………………………… ۹۲

۳-۶-۳)پوشش زخم……………………………………………………………………………. ۹۳

۴-۶-۳)تزريق دارو……………………………………………………………………………… ۹۴

۵-۶-۳)دندانپزشكي……………………………………………………………………………. ۹۴

۷-۳)مواد آرايشي…………………………………………………………………………………….. ۹۵

۸-۳)لباس محافظتي…………………………………………………………………………………. ۹۶

۹-۳)كاربرد الكتريكي و نوري……………………………………………………………………. ۹۷

۱۰-۳)كشاورزي……………………………………………………………………………………… ۹۷

۱۱-۳)كاربردهاي نانو تكنولوژي در نساجي………………………………………………… ۹۸

۱-۱۱-۳)دفع آب(ابگريزي)………………………………………………………………… ۹۸

۲-۱۱-۳)محافظت در برابر اشعه uv……………………………………………………. 100

۳ -۱۱-۳)ضد باكتري…………………………………………………………………………. ۱۰۱

۴-۱۱-۳)آنتي استاتيك………………………………………………………………………… ۱۰۳

۵-۱۱-۳)ضد چروك…………………………………………………………………………… ۱۰۴

۱۲-۳)كنترل كيفيت در توليد كامپوزيتهاي الياف نانو الكترو اسپان………………….. ۱۰۵

توزيع يكنواختي الياف نانو…………………………………………………………………….. ۱۰۶

سنجش الياف بصورت اتوماتيك……………………………………………………………… ۱۰۸

آزمايش مقاومت در برابر عوامل محيطي………………………………………………….. ۱۰۹

دستگاه آزمايش خميدگي DL……………………………………………………………………. 110

۱۳-۳)الياف نانو كامپوزيت الكترو اسپان براي تشخيص بيو لوژيكي اوره…………. ۱۱۱

۱۴-۳)تاثير افرودن الياف كربن بر روي خواص مكانيكي و كريستالي شدن پلي پروپيلن ۱۱۶

ضميمه …………………………………………………………………………………………………… ۱۲۵

نتيجه ……………………………………………………………………………………………………… ۱۲۹

منابع و مآخذ……………………………………………………………………………………………. ۱۳۱

تحقیق بررسي فرآيند توليد و كاربرد الياف فوق ظريف و نانو

نوشته تحقیق بررسي فرآيند توليد و كاربرد الياف فوق ظريف و نانو اولین بار در فايل مارکت - بازار فايل. پدیدار شد.

لطفا از لینک زیر دانلود کنید دانلود 

فایل

Powered by WPeMatico


نوشته شده در : دوشنبه 10 تیر 1398  توسط : عاطفه جهاندیده.    نظرات() .

پايان نامه دكتري تجزیه و تحلیل نیرو های وارده بر سوزن طی فرآیند سوزن زنی مخمل

پايان نامه دكتري تجزیه و تحلیل نیرو های وارده بر سوزن طی فرآیند سوزن زنی مخمل

فصل اول

منسوج نبافته مخمل

 

  • مقدمه

 

در حال حاضر پارچه های بی بافت با سطح مخمل شده یکی از مهم ترین منسوجات از طیف گسترده منسوجات بی بافت را تشکیل می دهند.  پارچه هایی که امروزه، به دلیل استفاده از یک فناوری خاص در تولید آنها و توسعه ای که این فناوری طی سالیان گذشته شاهد آن بوده است، قابلیتهای منحصر به فردی را دارا می باشند.

اینگونه پارچه ها با استفاده از ماشین سوزن زنی با طراحی خاص که به نام ماشین سوزن زنی مخمل[۱] نامیده میشود  تولید می گردند. علیرغم اینکه اصول طراحی اولیه ماشین آلات سوزن زنی نمدی و طرح زنی درآنها به کار گرفته شده است اما دو تفاوت اساسی را با اینگونه ماشین آلات دارا می باشند. [۱]

الف) در ماشین سوزن زنی مخمل، یک نوارمتحرک پوشیده ازبرس های مخصوص[۲]  جایگزین صفحه مشبک زیرین[۳] که متحرک نمیباشد گردیده است.

ب) سوزن های استفاده شده در ماشین سوزن زنی مخمل از نوع سوزن های چنگالی[۴] است ولیکن بر خلاف ماشین آلات طرح زنی چیدمان سوزن ها در تخته سوزن[۵] دارای چیدمان  نامنظم[۶] بوده و بدین جهت میتوان انتظار داشت که حداکثر سطح لایه تحت تاثیر عملیات سوزن زنی مخمل قرار گیرد.

به دلیل تفاوتهای فوق الذکر، تغذیه نمودن یک لایه متراکم سوزن زنی شده به ماشین سوزن زنی مخمل منجر به تولید پارچه ای می شود که یک سطح آنرا پرزهای مخمل مانند پوشانده است. لازم به توضیح است که به دلیل نیاز به زیاد بودن تراکم پرز سطحی در پارچه های مخمل، تراکم سوزن در ماشینهای سوزن زنی مخمل به مراتب بیش از ماشینهای سوزن زنی معمول است. که البته این امر با بهره گیری از دو تخته سوزن یکسان در ماشینهای سوزن زنی مخمل انجام می شود.

شکل ۱-۱ مسیر حرکت لایه مخمل شده را پس از خارج شدن از ناحیه سوزن زنی و جدا شدن از سطح برس نشان می دهد. بدین منظور از یک جفت غلتک برداشت استفاده می گردد.

بطور کلی روشهای تولید منسوجات بی بافت و از جمله منسوجات سوزن زنی شده دارای قابلیت تولید پارچه  در طیف بسیار گسترده جرم سطحي میباشند که این امر می تواند خواص فیزیکی و مکانیکی منسوج را تحت تاثیر قرار دهد. در این راستا نکته حایز اهمیت امکان تولید بسیار اقتصادی پارچه های کم وزن مخمل بی بافت در مقایسه با پارچه های مخمل بافته شده  تار و پودی می باشد. علاوه بر اقتصادی بودن بیشتر مخملهای بی بافت، قابلیت شکل پذیری حرارتی و مشابه بودن نسبی خواص مکانیکی آنها در جهت طول و عرض از مزیت های شاخص این نوع از پارچه ها نسبت به پارچه های مخمل تار و پودی با جرمهای سطحی مشابه است.

از طرف دیگر امکان استفاده از الیاف بسیار ظریف در این پارچه ها، قابلیت پوشانندگی (فاکتور پوشش) پارچه منسوج نبافته مخمل را به میزان قابل توجهی افزایش می دهد. قرار گرفتن تعداد قابل توجه از الیاف به صورت  نسبتا آزاد  درسطح  پارچه بواسطه  چیدمان نامنظم  سوزنها موجب افزایش  لطافت  سطح پارچه نیز

می شوند. این در مقایسه با عملیات تکمیلی خارزنی مورد نیاز در حالت پارچه  مخمل بافته شده که نه تنها هزینه تولید را افزایش میدهد بلکه باعث صدمه دیدن ساختمان پارچه و کاهش کیفیت آن می شود از اهمیت شایان  برخوردار  میباشد. انجام  تغیرات  سریع  و آسان در  فرایند تولید  مخملهای  بی بافت  که  سبب  ایجاد

خصوصیات فیزیکی و مکانیکی مورد نیاز میشود، طیف گسترده کاربرد نهائی  اینگونه منسوجات را فراهم آورده است.

 

شکل ۱-۱ مسیر عبور لایه منسوج نبافته در دستگاه سوزن زنی مخمل[۹]

 

جملگی این ویژگیها باعث بکارگیری بيشتر اينگونه پارچه های بی بافت  در صنعت حمل ونقل  بطور عام و در صنایع خودرو سازی ، دکوراسیون، اقلام خواب همانند پتو های مسافرتی، فیلتر سازی و برخی لوازم ورزشی و کفپوش بطور خاص گردیده است. شكل ۱-۲  کاربردهائی از منسوج مخمل بی بافت را در صنعت خودرو سازی نمایش می دهد.

شكل  ۱-۲   نمونه هايي از پارچه های منسوج نبافته مخمل و کاربردی از آن در خودرو[۹]

 

مخملی شدن سطح لایه نمدی تغذیه شده به واسطه تغیراتی میباشد که این عملیات خاص سوزن زنی در ساختمان لایه اولیه ایجاد مینماید.  قدر مطلق این تغییرات ساختاری خصوصیات متنوع مخمل بی بافت را کنترل مینماید. بسیار آشکار است که علاوه بر عوامل مربوط به الیاف و لایه اولیه ویا پارامتر های ماشین، سوزن مخمل سوزن بکار گرفته شده در این ماشین را بایستی نه تنها به عنوان مهم ترین عامل تاثیرگذار در چگونگی تغییر شکل ساختمان پارچه بلکه جهت تعیین میزان تنش وارده به اسکلت ماشین، سوزن و نهایتا میزان تغیر شکل اجزائ آن بهنگام عملیات سوزن زنی مد نظر قرار داد[۱,۲]. لذا نیرویی که در هر مرتبه سوزن زنی، از طرف سوزن به الیاف و متقابلا” از طرف مجموعه الیاف شکل دهنده ساختمان لایه نمدی به سوزن وارد می شود نیز نقش تعیین کننده ای در ساختمان نهایی پارچه منسوج نبافته مخمل شده دارد. به عبارت دیگر نتیجه عکس العمل الیاف به نیروهای وارده از طرف سوزن، مشخص کننده میزان و نحوه جابجایی الیاف تا رسیدن به نقطه شکل گیری پارچه مخمل است. بنا بر این شناخت عمیقتر نیروهای دینامیکی واردشده بر سوزن و تشخیص عوامل موثر برتغییرات آنها می تواند پیامدهای مفیدی از قبیل درک  صحیح تر و حتی قابل پیش بینی میزان و نحوه درگیری الیاف در ساختمان پارچه مخمل و کمک به طراحی مناسبتر ماشین و سوزن مورد استفاده را در پی داشته باشد. چرا که نیروی وارده بر سوزن بصورت بسیار بدیهی می تواند بر میزان سایش و شکستگی سوزن، شکستگی الیاف، میزان جابجایی الیاف در ساختمان پارچه و نهایتا” راندمان عمل سوزن زنی نقش موثر داشته باشد.[۱۷]

 

  • ماشین سوزن زنی مخمل و سوزن استفاده شده در آن

 

شکل هاي ۲-۱ و ۲-۲  نما های کاملتری را همراه با جزئیات بیشتر از یک دستگاه سوزن زنی مخمل نشان می دهد. همانگونه که در مقدمه نیز عنوان گردید، در این ماشین نوار متحرکی که حاوی برس های مخصوص  میباشد جایگزین صفحه مشبک زیرین موجود بر روی دستگاه سوزن زنی معمولی شده است.

 

شكل  ۲-۱  دو نمای شماتیک مختلف از ماشین سوزن زنی مخمل[۹]

 

تخته سوزن این دستگاه با نوعی سوزن که نوک چنگال مانند دارد به نحوی پر می شود که آرایش یافتگی آنها به صورت نامنظم باشد. شكل ۲-۳ تصوير  شماتيكي از سوزن چنگالی[۷] بهمراه  چنگال قرار گرفته در نوک آنرا نشان می دهد. با نفوذ سوزن بخشی از الیاف موجود در ساختمان نمد به داخل برس های زیر آن انتقال داده شده و درفضاي موجود مابين نخ های تشکیل دهنده برس   قرار می گیرند.  هر چه تعداد الیاف منتقل شده در واحد سطح بیشتر باشد، تراکم پرز[۸] ایجاد شده بر روی پارچه مخمل نیز بیشتر است. البته تاثیر ظرافت و تراکم نخهای فیلامنت تشکیل دهنده برس نیز بعضا” قابل ملاحظه است. این در حالیست که  افزایش تعداد الیاف منتقل شده در واحد سطح می تواند ناشی از افزایش تراکم سوزن زنی[۹]  نیز باشد.

شكل ۲-۲   ناحيه سوزن زنی در ماشین سوزن زنی مخمل شرکت دیلو[۹]

سوزن مورد استفاده از نوع سوزن های چنگالی است. چنگال و ابعاد آن میتوانند بسیار متنوع باشند. هندسه چنگال در رابطه با خصوصیات فیزیکی الیاف و لایه اولیه مورد استفاده تعیین میشود. فضای داخلی چنگال سوزن توانائی سوزن از نقطه نظر تعداد الیاف منتقل شده به سطح منسوج را تحت کنترل دارد.

 

شكل  ۲-۳  سوزن چنگالي و تصويري شماتيكي ازچنگال قرار گرفته در نوک آن[۱۰]

 

با توجه به عوامل فوق و با استفاده از الیاف ظریف امکان تولید پارچه های مخمل با تراکم پرز بسیار زیاد، به کمک لایه اولیه با جرم در واحد سطح کم و ساختمان بسیار درگیر(فشرده) فراهم می شود. در مقایسه جمع آوری جملگی این شرایط به صورت یکجا در حالت پارچه مخمل تار و پودی غیر اقتصادی      میتواند باشد.

به منظور تولید پارچه های با تراکم پرز بسیار زیاد ، ماشین آلات سوزن مخمل معمولا دارای  دو تخته سوزن مشابه و از نقطه نظر دینامیکی همفاز میباشند. بدین ترتیب نه تنها تعداد سوزن موجود جهت عملیات سوزن زنی افزایش قابل توجهی یافته بلکه افزایش تراکم ضربه در واحد سطح امکان افزایش سرعت خطی نوار حاوی برسها را فراهم آورده است، و بدین گونه تولید پارچه های فوق الذکر به صورت کاملا” اقتصادی امکان پذیر گردیده است. نوار متحرک زیرین حاوی برس هایی است که به صورت قالب های در هم جفت شده آرایش پیدا کرده اند. نحوه چیدمان قالب های برس در کنار یکدیگر به گونه ای است که هیچگونه فضاي خالي ازفیلامنت های برس در فصل مشترک بین برس ها وجود نداشته  و عملا

[۱] – Random-Velour Needle Loom

[۲] – Brush Conveyor

[۳] – Bed Plate

[۴] – Structuring Fork Needle

[۵] – Needle Board

[۶] – Random

[۷] – Fork Needle

[۸] – Pile Density

[۹] – Punching Density

پايان نامه دكتري تجزیه و تحلیل نیرو های وارده بر سوزن طی فرآیند سوزن زنی مخمل

نوشته پايان نامه دكتري تجزیه و تحلیل نیرو های وارده بر سوزن طی فرآیند سوزن زنی مخمل اولین بار در فايل مارکت - بازار فايل. پدیدار شد.

لطفا از لینک زیر دانلود کنید دانلود 

فایل

Powered by WPeMatico


نوشته شده در : دوشنبه 10 تیر 1398  توسط : عاطفه جهاندیده.    نظرات() .